
Large Synoptic Survey Telescope (LSST)

Report on Summer 2014 Production:
Analysis of DCR

Andrew Becker, Simon Krughoff, and Andrew Connolly

DMTN-070

Latest Revision: 2014-10-01

Abstract

The goals of this Summer 2014 (S14) task were to understand the scope of the dif-
ferential chromatic refraction (DCR) issue using a realistic range of stellar spectral
energy distributions (SEDs).
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Report on Summer 2014 Production: Analysis of DCR

1 Summary

The goals of this Summer 2014 (S14) task were to understand the scope of the differential
chromatic refraction (DCR) issue using a realistic range of stellar spectral energy distributions
(SEDs). We used LSST catSim’s all–sky catalog of stellar sources, including their number counts
and magnitude distributions, to estimate how many sources will be detected at 5–sigma in
the LSST 𝑢𝑔𝑟𝑖–bands. The SED of each of these sources was used to model the per–passband
refraction, and then the differential refraction with respect to a single reference SED, as a
function of airmass.

We first examined the amplitude of the vector connecting the DCR of a source from 2 different
observations. The DCR in a single observation was calculated with respect to the reference
SED. We assume that objects having this reference SEDmay be used to define an astrometric
reference frame, within which the red/blue stars will move based upon the effects of DCR.
A differential DCR vector may then be defined through comparison with the amplitude and
orientation of DCR in a second observation, which should represent the shape of a dipole
arising in image subtraction from images taken under these two conditions, assuming that
astrometric registration proceeds using objects the color of the reference SED.

We placed our reference SED at airmass 1.25 to provide a DCR “zero point”. We then varied
the airmass and parallactic angle of a second observation, and calculated the amplitude of the
differential DCR vector for each of 6292 SEDs. This amplitude is band, airmass, and parallactic
angle dependent. We quantified the 𝑢𝑔𝑟𝑖𝑧–band dependence of this vector on airmass and
parallactic angle difference: nearly all stars in the 𝑔–band, and 𝑟–band sources with parallactic
angle differences of 20 degrees or airmass differences of 0.15, will exhibit differential DCR
amplitudes larger than 5mas. In the 𝑖–band, this is relaxed to parallactic angle differences of
25 degrees or airmass differences of 0.2, with the majority of 𝑖–band sources exhibiting DCR
coming from theM–dwarf population. In the 𝑧–band only large differences in parallactic angle
yield significant numbers of objects with this vector amplitude larger than 5mas.

We then examined the degree to which DCR amplitudes can be modeled using broad–band
color and airmass terms. It is presumed a process like this must be established to undo or
mimic the effects of refraction when coadding or subtracting data. We additionally looked at
how errors in source colors impacted these model estimates of DCR. A random forest regres-
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sion model using source colors, airmass terms, and color–airmass cross terms was found
to provide the best model of both refraction and DCR vs. airmass, judged using a cross–
validation sample of data not used in the model fitting. We found that 𝑢–band refraction and
DCRmodelsmay be built that have RMS residuals of less than 5mas at all zenith distances, but
having a tail where 1% of sources showmodel residuals larger than 5mas beyond 20 degrees
zenith distance. Errors in source color further degrade this, such that 10% misestimates of
source color yield 5mas model residuals for 1% of stars at 5 degrees zenith distance. These
results worsen at larger zenith distance. In the 𝑔–band, both refraction and DCRmay bemod-
eled to zenith distance of 50 degrees, such that 10−5 of stars or less show residuals of 5mas.
Photometric errors of ∼ 2.5% or greater significantly degrade our ability to model 𝑔–band re-
fraction and DCR. In the 𝑟𝑖𝑧–bands, the fraction of stars exhibiting larger than 5mas residuals
from the model are at the 10−5 level or lower.

To summarize, predicting the amplitude of DCR in the 𝑢–band will be a significant difficulty
under nearly all realistic conditions. DCR in the 𝑔–band appears to be largely (but not entirely)
approachable using non–linear regression models and color/airmass terms. DCR in the 𝑟𝑖𝑧–
bands may be modeled with small residuals using the same class of regressions. We note
that these results are restricted to the stellar SEDs studied in this report. This research does
not address the actual methods needed to compensate for the DCR predictions coming out
of this modeling process, although we provide some thoughts on possible techniques within
the report.

2 Scope and Goals

The goal of this research was to model the frequency at which DCR–related dipoles will arise
in LSST data. This includes the frequency of dipoles in the absence of any modeling, and
after attempts to predict and compensate for the effect. Implementation of actual methods
to compensate for total and differential refraction at the pixel level were left as stretch goals
that were preempted by the LSST 2014 documentation sprint.

We used the theoretical and simulation studies undertaken in Winter 2014 [DMTN-069] to
understand the amplitude of astrometric offsets that lead to measurable dipoles in high S/N
point sources: there is 1% chance of generating a measurable dipole when there are unmod-
eled astrometric residuals of ∼5 mas in 0.6” seeing, or ∼7 mas in 0.88” seeing. To create a
realistic all–sky 5–sigma sample of potential DCR sources, we used the actual SED popula-
tion and brightness distribution of all objects from the catalogs used to seed the LSST image
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simulations. The SED of each source was used to find exact per–source and per–passband
refraction amplitudes, as a function of airmass. The broad–band colors were then used as in-
puts to amodeling effort to understand our ability to predict refraction as a function of source
color and airmass. We trainedmultiple regressionmodels on 2/3 of these data, with color and
airmass terms as features, andwith the SED–derived total or differential refractions as the val-
ues we intended to predict. The other 1/3 of these data were used to assess the predictive
power of these models.

All tasks were undertaken under epic DM-246, “Investigate compensation for Dcr”. The main
stories were:

• DM-787: Using a realistic distribution of all SEDs from catSim, understand the bulk num-
bers of stars that we expect to exhibit DCR above a fiducial amplitude of 5mas.

• DM-788: With this same distribution of catSim sources, use their spectral energy distri-
butions to understand the per–source refraction amplitudes.

• DM-789: Model and predict the per–source refraction amplitudes using only broad–
band color and airmass terms. This includes linear regression and non–linear machine
learning techniques. Understand how well the source color must be measured to be
able to predict the refractive astrometric shift to within in a given tolerance of 5mas.

• DM-790: With this same distribution of catSim sources, use their spectral energy dis-
tributions to understand the per–source differential chromatic refraction (DCR) ampli-
tudes.

• DM-791: Model and predict the per–source DCR using only broad–band color and air-
mass terms. Understand how well the source color must be measured to be able to
predict the DCR astrometric shift to within in a given tolerance of 5mas.

3 Results

3.1 DM-787

The first task was to understand the magnitude of the problem: how many total stars do we
expect to exhibit the effects of differential chromatic refraction at an amplitude of 5mas. As
inputs, we used the entirety of the catalog simulation suite of SEDs. For each discrete SED,
the numbers of stars in the catalog were extracted from the catSim database, in 1–magnitude
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bins in apparent 𝑔–bandmagnitude. Their SEDs were used to calculate magnitudes in the 𝑢𝑟𝑖𝑧
passbands, which were used to calculate the total numbers of objects brighter than fiducial
5–sigma limiting 𝑢𝑔𝑟𝑖𝑧 magnitudes of [23.9, 25, 24.7, 24, 23.3], respectively. This resulted in the
numbers of sources of a given SED, per passband, that LSST is expected to detect above 5–
sigma.

Using the flux vs. wavelength profile of each SED, and the transmission profiles of the LSST
𝑢𝑔𝑟𝑖𝑧 passbands, we were able to calculate a flux–weighted refraction offset for each source,
within each passband, and for a given airmass. This offset is assumed to be the “truth” in the
analyses that follow.

We chose a reference SED with median g-r colors (km15_5250.fits_g05_5470.gz) to calculate
DCR against. We first calculated the amplitude of refraction for this reference source at an
airmass of 1.25, and also did so for each of the other 6292 SEDs in the catSim database. The
DCR amplitude for each source is trivially calculated as the difference of the reference and
source refraction amplitudes. We then calculated both the amplitude and direction of DCR
in a second observation, with a range of differing airmasses and/or parallactic angles. This
difference in DCR vector is what will manifest as a dipole in a subtracted image (e.g. if all
images are taken under the same airmass and parallactic angle conditions, DCR will be the
exact same in all images, and there will be no dipoles due to this effect). The total fraction of
sources that exhibited a differential DCR amplitude greater than 5mas was used to color code
the Δ airmass and Δ parallactic angle grid in Figure 1, for each of the 𝑔𝑟𝑖𝑧 passbands. The red
line shows where the fraction of sources exhibiting DCR larger than 5mas is larger than 1%
(i.e. 1% of stars have a 1% chance of yielding DCR dipoles in a difference image). We note
that in the 𝑔–band 1% of all sources will exhibit differential DCR larger than 5mas for even
small differences in airmass and parallactic angle between 2 images, for a reference airmass
of 1.25. In the 𝑟–band a difference of 20 degrees of parallactic angle at the same airmass, or a
difference of 0.15 in airmass, will yield an enhanced DCR dipole rate. In 𝑖–band this is relaxed
to Δ airmass of 25 degrees and Δ angle of 0.2. By 𝑧–band only large differences in parallactic
angle yield an enhanced rate of dipoles.

To understand how much of the DCR dipole signal comes from the majority population of
red M–dwarfs, we repeated this analysis but ignoring the M–dwarf SEDs. These results are
plotted in Figure 2. By comparing these results with those in Figure 1, we see that much of
the DCR sensitivity in the 𝑖–band comes from these M–dwarfs. However, in the bluer bands,
LSST will still be primarily sensitive to DCR from the other populations of objects, given the
intrinsic faintness of M–dwarfs in these bands.
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Figure 1: Fraction of Stars Exhibiting DCR Offsets Larger than 5mas: We plot the fraction
of all stars in the catSim database, brighter than 5–sigma, that will have differential DCR am-
plitudes larger than 5mas compared to reference SED km15_5250.fits_g05_5470.gz at airmass
1.25. The per–passband total numbers of stars brighter than 5–sigma are listed in the title of
each subpanel. Each subpanel shows heatmaps with the log10 fraction of these stars having
DCR amplitudes larger than 5mas, for differences in airmass and parallactic angle, for stars
in the 𝑔𝑟𝑖𝑧–bands. This figure may be recreated using the script python/calculateSedDcr2.py.

3.2 Modeling Refraction: DM-788 and DM-789

In this work we assessed the extent to which we can predict the amount of refraction from
broadband colors and airmass terms. In addition, we also determined the level of precision
at which we need to measure these colors before our estimate of refraction is significantly
impacted. We defined “significant” as yielding a difference of 5mas w.r.t. the “true” amount
of refraction determined using SEDs.

The first step in this process was to calculate the per–SED, per–passband refraction ampli-
tudes as a function of airmass, as described above. This reflects the underlying “truth”, in
terms of refraction amplitude, that we attempted to model. For each source, we calculated
the set of broadband colors 𝑢 − 𝑔, 𝑢 − 𝑟, ..., 𝑖 − 𝑧 to provide a coarse estimate of the underlying
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Figure 2: Fraction of non–M Dwarf Stars Exhibiting DCR Offsets Larger than 5mas: Same
as Figure 1, but excluding the majority M-dwarf population of objects.

SED. It is assumed that LSST will have some measured estimate of these values available for
each source, but no additional information regarding the true SED. At a range of airmasses,
we calculated airmass terms 𝑡𝑎𝑛(𝑧) and 𝑡𝑎𝑛3(𝑧)where 𝑧 is the zenith distance of the observation
[e.g. 2]. We defined a refraction model using these terms, in order to predict the amplitude
of refraction as a function of source color and airmass:

𝑅(𝑆𝐸𝐷; 𝑧) = ∑
𝑖=ugriz

∑
𝑗>𝑖

𝐴𝑖𝑗(𝑚𝑖 − 𝑚𝑗) (1)

+ ∑
𝑖=ugriz

∑
𝑗>𝑖

𝐵𝑖𝑗(𝑚𝑖 − 𝑚𝑗) × 𝑡𝑎𝑛(𝑧)

+ ∑
𝑖=ugriz

∑
𝑗>𝑖

𝐶𝑖𝑗(𝑚𝑖 − 𝑚𝑗) × 𝑡𝑎𝑛3(𝑧)

+ 𝐷 × 𝑡𝑎𝑛(𝑧) + 𝐸 × 𝑡𝑎𝑛3(𝑧).

and explored several ways to solve for [𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐶𝑖𝑗 , 𝐷, 𝐸]. It is assumed that the parallactic
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angle, and thus the direction of refraction, is known.

A linear regression was performed using the following methodology:

import numpy as np

A = np.array((nsed * nairmass, nterms))

R = np.array((nsed * nairmass,))

# Fill array A with features; fill array R with SED-based refractions

cov = np.linalg.inv(np.dot(A.T, A))

soln = np.dot(cov, np.dot(A.T, R))

pred = np.dot(soln, A.T).

Here nsed is the number of discrete SEDs in the database (6293), nairmass are the airmasses to
evaluate the model at (0..49 degrees in steps of one degree), and nterms are the total number
of features in the model. The mean and root–mean–square residuals of the prediction pred

were used to ascertain the goodness of fit. We found that this linear model was insufficient
to describe the effects of refraction.

Accordingly, we further explored non–linear regressions using the scikit–learn classes Linear-
Regression (effectively the same as above), ExtraTreeRegressor, DecisionTreeRegressor,
and RandomForestRegressor. We used 2/3 of the inputs to fit the regression, and validated
the predictive power of each model using the other 1/3 of the data. In most cases we found
that the random forests provided the best results, in terms of the mean model residuals as
a function of airmass, the RMS residuals as a function of airmass, and the fraction of stars
showing unmodeled residuals larger than 5mas. We summarize these results for 𝑢–band in
Figure 3, with 𝑔𝑟𝑖𝑧–band data found in Figure 5 in Appendix A.1. Within each subfigure, we
plot the mean (top) and RMS residuals (middle) of the cross–validation sample, along with the
fraction of all cross–validation stars that are misfit by more than 5mas (bottom).

Several trends are apparent. First, the linear regression model is too inflexible to provide an
unbiased model of refraction as a function of airmass. Second, the random forest regression
generally provides an unbiased fit and the smallest RMS residuals as a function of airmass,
with a notable exception being in the 𝑢–band, where the extra tree and decision tree regres-
sors outperform. Finally, the refraction model is such that less than 1% of all stars in the
database will have residuals larger than 5mas out to 20 degrees zenith distance in the 𝑢–
band, using the random forest model, which yields the smallest fraction of these outliers. In
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(a) 𝑢–band

Figure 3: Modeling Refraction Using Broadband Colors: This figure summarizes the quality
of the 𝑢–band regressions for the modeling of refraction as a function of airmass. We used
2/3 of the catSim SEDs to train the model, and 1/3 of the data to test the predictive power of
the model. This figure shows the mean residuals (top) of the out–of–sample data, the root–
mean–square residuals (middle), and the fraction of the out–of–sample sources with residuals
larger than 5mas (bottom). We plot curves for each of the LinearRegression, ExtraTreeRe-
gressor, DecisionTreeRegressor, and RandomForestRegressor models. We find that the
linear regression provides a biased estimate of refraction at all airmasses, as does the ran-
dom forest model, to a lesser degree. The RMS residuals of the 𝑢–band models are less than
5mas at all airmasses. However, there is a tail of objects that exhibit 5mas residuals beyond
approximately 20 degrees zenith distance (the horizontal line in the bottom panel indicates
where 1% of the objects show residuals larger than 5mas). The random forest model pro-
vides the best model in terms of minimizing the number of these outliers. Similar plots for
the 𝑔𝑟𝑖𝑧–bands can be found in Figure 5. This figure was created using the script python/cal-
culateSedDcr3ML.py.
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all other passbands, and at all airmasses, the fraction of stars with large unmodeled residuals
is orders of magnitude smaller. We note that the random forest model is significantly better
than all other models in these bands (Figure 5). The “spikes” in these residuals plots come
from a small number (typically less than 3) of discrete SEDs that comprise a fractionally large
portion of the out–of–sample data.

For the random forest model we retained the feature importance metrics. We found for all
refraction models, the 𝑡𝑎𝑛(𝑧) and 𝑡𝑎𝑛3(𝑧) terms primarily drove the model, followed by three
color and color–airmass interaction terms at nearly equal importance: in the 𝑢 − 𝑔; 𝑔 − 𝑟; 𝑔 −
𝑖; 𝑟 − 𝑧; 𝑢 − 𝑖 colors for the 𝑢𝑔𝑟𝑖𝑧 bands, respectively. For example, for the 𝑢–band, the top 5
terms were 𝑡𝑎𝑛(𝑧), 𝑡𝑎𝑛3(𝑧), 𝑢 − 𝑔, (𝑢 − 𝑔) ⋅ 𝑡𝑎𝑛(𝑧), (𝑢 − 𝑔) ⋅ 𝑡𝑎𝑛3(𝑧). A figure showing the relative
feature importance for modeling refraction in the 𝑢–band is shown in Figure 4.

We note that we did not attempt to optimize hyperparameters of themodels (e.g. the number
of trees in the random forest). We did explore weighted regressions, where each point in
the training contributed proportional to the number of SEDs in the database, but this did
not significantly alter the model’s predictive ability. Because of the random nature of some
of these models, we did notice subtle differences (e.g. in feature importance) in the results
between different runs.

3.2.1 Required Photometric Precision

In order to understand LSST’s ability tomodel refraction, as a function of uncertainty on source
color, we repeated the above analysis but including a randomoffset to the colors of the cross–
validation test data. These offsets were intended to mimic the effects of measurement un-
certainty on the source color. Offsets were drawn from normal distributions with means of
zero (no bias) and widths of (0.01, 0.025, 0.05, 0.075, 0.1) magnitudes in color. These were
added to the SED–derived broadband colors and the regression model evaluated to generate
a “noisy” prediction. We only used the RandomForestRegressor since this model seemed
to perform best under most conditions. Results are summarized in Figure 5 for 𝑢–band, and
Figure 3 for 𝑔𝑟𝑖𝑧–bands.

We find that in the 𝑢–band, even 1% photometric scatter provides a significant degradation
in the modeling of refraction, with 1% of objects having residuals larger than 5mas beyond
10 degrees zenith distance, compared to a similar limit of 20 degrees when there are no pho-
tometric errors. At 10% photometric error in color, modeling refraction beyond 5 degrees
zenith angle becomes difficult. Looking at the bluer passbands (Figure 3), 2.5% photometric
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Figure 4: Feature Importance: This figure shows the relative importance of features used to
model refraction in 𝑢–band using a random forest regression.

error is sufficient to degrade the models predictive power in 𝑔–band beyond 40 degrees, and
5% error degrades the model beyond 25 degrees. In the 𝑟–band and beyond, the model is
sufficient to predict refraction with even 10% photometric errors in source color, out to 50
degrees zenith distance. However, there will be a small population of outliers (∼ 10−4) at large
zenith distances that will show 𝑟–band refraction errors larger than 5mas. Given the large
numbers of stars expected to be detected (∼ 3𝑒9), this translates to approximately one object
per sensor having a 1% chance of yielding a dipole, in 𝑟–band, at 50 degrees zenith distance
(3𝑒9 × 1𝑒 − 4/2000 LSST fields).
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(a) 𝑢–band

Figure 5: Mapping Color Errors to Refraction Misestimates: This figure shows the results
of evaluating a noisy dataset using a 𝑢–band RandomForestRegressor regression model on
refraction amplitude. The top panel provides a measure of the mean model offset as a func-
tion of airmass, themiddle panel the RMS offset, and the bottom panel the fraction of outliers
with offsets larger than 5mas. An out–of–bag sample comprising 1/3 of the SED dataset was
used to evaluate these models. In blue, we show the core model performance in the absence
of photometric errors. The other lines show the degradation of the model when the test data
have random offsets of 1% to 10%. Similar plots for the 𝑔𝑟𝑖𝑧–bands can be found in Figure 3.
This figure was created using the script python/calculateSedDcr3ML_deriv.py.

3.3 Modeling DCR: DM-790 and DM-791

In this work we determined the extent to which we can predict the amount of DCR from the
broadband colors and airmass terms, similar to the analysis above. We came to similar con-
clusions from the training process, in that the random forest regression yields the model
with the most predictive power (with the exception of the 𝑢–band) and fewest outliers (in all
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(a) 𝑢–band

Figure 6: Modeling DCR Using Broadband Colors: Similar to Figure 3, but for a regression
model that predicts DCR instead of refraction. Similar plots for the 𝑔𝑟𝑖𝑧–bands can be found
in Figure 1. This figure was created using the script python/calculateSedDcr4ML.py.

bands). We also reached very similar conclusions on the degree to which DCR is model–able,
given broad–band colors and airmass (Figure 6 for 𝑢–band, and Figure 1 for 𝑔𝑟𝑖–band).

We found that DCR in 𝑢–bandwas predictable out to a threshold of 20 degrees zenith distance,
beyond which 1% of stars deviated from the model by more than 5mas. In the 𝑔–band and
beyond (Figure 1) there were a small fraction of sources (of order 10−6) exhibiting residuals
larger than 5mas beyond zenith distance of 40 degrees, which translate to approximately 1
per LSST field.

12
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3.3.1 Required Photometric Precision

In order to understand LSST’s ability to model DCR, as a function of uncertainty on source
color, we repeated the above analysis including a random offset to the colors of the cross–
validation test data. This analysis was performed similar to the refraction analysis in Sec-
tion 3.2.1. Results are summarized in Figure 7 for 𝑢–band, and Figure -1 for 𝑔𝑟𝑖–bands.

We find similar results to the refraction analysis. In the 𝑢–band, DCR estimates for objects
having photometric errors of 10% will be inexact beyond zenith distances of 5 degrees (Fig-
ure 7). In the 𝑔–band, 1% photometric errors are sufficient to avoid significantly wrong DCR
predictions, but with 2.5% photometric errors, 1% of stars at 35 degrees zenith distance will
have their DCR amplitudes misestimated by more than 5mas (Figure -1). In the 𝑟–band, there
is a small population of objects beyond zenith distance of 40 degrees (approximately 1 per
sensor) that will exhibit model residuals larger than 5mas when photometric errors are of
order 10%. In the 𝑖𝑧–bands, photometric errors result in negligible DCR estimation errors.

4 Summary

As this analysis has shown, the process of compensating for DCR will be difficult in the 𝑢–
band beyond 10 degrees zenith distance, assuming 𝑢 − 𝑔 source colors known to order 1%.
The models examined here do not have the power to generate an accurate prediction in this
passbands, in the presence of significant photometric noise. The large amplitude of DCR in
this passband, along with the low signal–to–noise expected in the 𝑢–band, will make this a
difficult task.

The results are significantly more optimistic in the 𝑔–band, where 1% mismeasurements of
source color yield approximately 1 object per LSST sensor where the model will incorrectly
predict the amplitude of DCR by more than 5mas, beyond zenith distance of ∼ 25 degrees. In
the 𝑟–band, there will be a similar population of objects with 10% photometric errors, beyond
zenith distance of ∼ 50 degrees. In the 𝑖𝑧–bands, the amplitudes of DCR are small enough that
there is minimal dependence on the photometric quality. We note that at this fiducial offset
of 5mas, 1% of objects will show a DCR–based dipole in 0.6” seeing conditions. For worse see-
ing, the mismatch between model prediction and actual DCR amplitude can be larger before
yielding a 1% chance of a dipole.

We note that this analysis has only been performed using the SEDs of stellar objects. It is not
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(a) 𝑢–band

Figure 7: Mapping Color Errors to DCR Misestimates: This figure was created using the
script python/calculateSedDcr4ML_deriv.py.

expected that a refraction or DCR model generated using stars will be applicable to QSOs.
However, objects with unusual SEDs may be identified based upon their systematic residuals
from stellar refraction models, and targeted for further study.

5 Additional Thoughts

The requirements for the treatment of DCR in image subtraction must be traced back to the
creation of the image subtraction templates. To stack these images, the effects of DCR must
be compensated for (or “undone”) before coaddition/averaging. To not do so will introduce a
systematic secondmoment to the effective template Psf that will be source–color dependent.
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While the baseline design is for templates to be made at different seeings and airmasses, the
Winter 2014 work indicates that parallactic angle must be a third variable to consider. It is not
clear if there will be enough data early in the survey to make the requisite permutations of
templates, especially in the 𝑢 and 𝑔–bands. This suggests that DCR may have to be modeled
and compensated for during the creation of the templates, and then in the registration of the
templates to the science images.

Oneproposal is tomodel the effects of DCR at the pixel level, and treat each footprintwithin an
image as a bundle of pixels that have a particular color. Each bundle would then be remapped
to a fiducial (e.g. airmass=1) reference systemwith a color dependent term. Coadditionwould
happen using these DCR–aware remapped images and themodels described above to predict
this per–source additional offset. The registration of such a template image to a new science
image, with its own DCR effects, would occur by mimicking the effects of DCR on the template
image pixel bundles, using the known source colors and the airmass of the science image. The
background pixels (and the low S/N sources within) would be remapped using an “average”
color.

There are several difficulties with this process (which are not unique to this pixel–based solu-
tion). The first is that objects that change in color will have a time–dependent DCR amplitude.
The second is that the treatment of DCR in crowded fields, or of red/blue blends, may not have
a unique solution. In this case even the consistent treatment of these blended pixel bundles
across epochs may not be sufficient to completely undo for coaddition, and then mimic for
subtraction, the effects of DCR. As a speculative note, it may be possible to learn, or at least
more tightly constrain, the optimal deblending of pixels in the bundle using the time–series
of images and observations across the 𝑢𝑔𝑟–bands where DCR effects are strongest.

Finally, the optimal treatment of DCR for faint (not detectable in single–epoch images) sources
will require an iterative approach, where they are treated as background during the creation
of detection coadds. After stacking and detection, they may be re–coadded using the (ap-
proximate) colors that come from stacked or multi–fit measurements. The consequence of
treating faint sources as backgroundwill be loss in depth of detection in the coadd, for objects
of extreme color. In all cases, a multi–epoch measurement package like multi–fit will need to
be DCR–aware to compensate for per–epoch centroid shifts.
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A Additional Figures

A.1 Modeling Refraction Using Broadband Colors

(a) 𝑔–band

Figure 8: Modeling Refraction Using Broadband Colors: Continuation of Figure 3.
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(b) 𝑟–band

Figure 7: Modeling Refraction Using Broadband Colors: (cont)
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(c) 𝑖–band

Figure 6: Modeling Refraction Using Broadband Colors: (cont)
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(d) 𝑧–band

Figure 5: Modeling Refraction Using Broadband Colors: (cont)
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A.2 Mapping Color Errors to Refraction Misestimates

(a) 𝑔–band

Figure 6: Mapping Color Errors to Refraction Misestimates: Continuation of Figure 5.
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(b) 𝑟–band

Figure 5: Mapping Color Errors to Refraction Misestimates: (cont)
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(c) 𝑖–band

Figure 4: Mapping Color Errors to Refraction Misestimates: (cont)
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(d) 𝑧–band

Figure 3: Mapping Color Errors to Refraction Misestimates: (cont)
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A.3 Modeling DCR Using Broadband Colors

(a) 𝑔–band

Figure 4: Modeling DCR Using Broadband Colors: Continuation of Figure 6.
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(b) 𝑟–band

Figure 3: Modeling DCR Using Broadband Colors: (cont)
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(c) 𝑖–band

Figure 2: Modeling DCR Using Broadband Colors: (cont)
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(d) 𝑧–band

Figure 1: Modeling DCR Using Broadband Colors: (cont)
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A.4 Mapping Color Errors to DCR Misestimates

(a) 𝑔–band

Figure 2: Mapping Color Errors to DCR Misestimates: Continuation of Figure 7.
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(b) 𝑟–band

Figure 1: Mapping Color Errors to DCR Misestimates: (cont)
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(c) 𝑖–band

Figure 0: Mapping Color Errors to DCR Misestimates: (cont)
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(d) 𝑧–band

Figure -1: Mapping Color Errors to DCR Misestimates: (cont)
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